Emergency department resuscitation of the critically ill .pdf download

Emergency department resuscitation of the critically ill .pdf download

emergency department resuscitation of the critically ill .pdf download

Chinese specialists in critical care medicine were organized and as sudden deterioration of illness, emergency resuscitation procedures and. View Table|Favorite Table|Download .pdf) This may mean activating emergency medical service (EMS), activating an in-house critical In the non-​exsanguinating critically ill patient, prompt placement of a short, large-gauge catheter into a. Emergency Department Resuscitation Of The Critically Ill For Just $14.00 Dollars Download this eBook and all other ebooks you want. File Type: PDF.

Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China

According to the GRADE method and summary of the results, experts drew up 46 statements. Of these guidelines, 5 had a high level of evidence (GRADE 1 ±), 21 had a low level of evidence (GRADE 2±), and 20 were expert opinions. A strong agreement was reached for all statements after two rounds of scoring.

I Prevention and control of infections

Occupational safety and health

As the front-line of the COVID-19 outbreak response, health care workers are exposed to a huge risk of infection. Therefore, health care workers must follow the standard precautionary principles and try their best to ensure the personal protection, hand hygiene, ward management, environmental ventilation, and sanitization of the object surface, so as to avoid nosocomial cross-infection.

Statement 1

Implementation of standard precautions, strengthening ward management, and self-management are suggested safety measures for health care workers (expert opinion).

Rationale Averted by the current epidemic situation of COVID-19, taking proper precautions is essential for avoiding the spread of infection among health care workers. Thus, the following points need to be considered.

As a high-risk environment, tertiary class protection is suggested for health care workers in intensive care unit (ICU). Personal protective equipment (PPE) includes disposable surgical cap, N95 mask, work uniform, disposable medical uniforms, disposable latex gloves, goggles, and full-face shields. Full-face respiratory protective devices or powered air-purifying respirators are required when performing aerosol-generating procedures. Destroying and disposing of masks properly, putting on and removing PPE, and practicing hand hygiene are necessary to avoid self-contamination. Special attention should be paid to details such as the side exposure of the eyes and wrists with glove slippage, as well as the risks of infection while removing some disposable shoe covers [7]. The hand hygiene system should be strictly implemented according to the newly developed Five Moments for Hand Hygiene included in the WHO Guidelines on Hand Hygiene in Health Care (Advanced Draft) [8].

Clinical triage system needs to be established to assess all patients at admission, allow for early recognition of possible COVID-19 cases and immediate isolation of patients with suspected disease in an area separate from other patients (source control). The number of family members and visitors who are in contact with suspected or confirmed COVID-19 patients should be limited or visiting should be prohibited altogether. The proper disposal of clinical waste should be ensured [9].

Health care workers need to self-monitor for signs of illness and self-isolate. If illness occurs, they should report it to managers and stay at home. A sensible diet, proper rest, and adequate exercise are advised to maintain physical and psychological health. Health care workers should familiarize themselves with related working procedures so as to avoid mistakes [10].

Statement 2

Proper ICU ward setting, necessary equipment and facilities, and strict ICU environmental disinfection, are suggested (expert opinion).

Rationale It is suggested to adjust measures according to the differing conditions so as to set the ICU ward rationally. Contaminated areas, potentially contaminated area and clean areas need to be strictly divided. The buffer zone should be set between every two areas. Posting eye-catching logos on each area is required to prevent straying into the wrong place. Different points of access should be set for medical staff and patients, making sure they do not get crossed. For ICU, tertiary class protection should be correctly performed in each area, which is of great importance for precaution of COVID-19 [11]. The use of negative pressure rooms with natural ventilation is recommended by the WHO guidance to prevent the spread of airborne pathogens among rooms [7, 12].

First-aid materials and medicine such as oxygen tank, electrocardiogram (ECG) monitor, defibrillator, injection pump, infusion pump, endotracheal intubation supplies, portable vacuum extractor, noninvasive ventilator, invasive ventilator, hemofiltration equipment, extracorporeal membrane oxygenation (ECMO) equipment and so on should be prepared. Other equipment, including air disinfecting machine and air cleaner, as well as medical gas systems including oxygen, compressed air, special gas, and vacuum suction systems, need to be assured too.

It is of particular importance to implement effective measures to prevent the spread of COVID-19 in ICU. Disinfection includes concomitant disinfection and terminal disinfection. Concomitant disinfection must be conducted immediately for the materials and environment contaminated by the excretion of the suspected and confirmed patients. Following the end of 1 day’s work in ICU, or the patients’ recovery or death in the isolation ward, terminal disinfection needs to be done carefully. Key disinfection objects include patients’ living supplies such as clothes and quilt, medical supplies, ground and wall space of ICU wards, the surface of desks and bed tables, as well as air [11, 13].

Precautions of artificial airway establishment and fiber bronchoscopy procedures in severe COVID-19 patients

Current evidence indicates that COVID-19 is mainly transmitted from person to person through droplets, contact, and even high concentrations of aerosols [6]. Large amounts of droplets and aerosol are generated by sputum suction in the airway, specimen collection, tracheal intubation, fiber bronchoscopy, tracheotomy, etc. Accordingly, surgeons are at a great risk of contamination. In order to avoid occupational exposure, recommendations during the aerosol-generating procedures in COVID-19 patients are the following:

Statement 3

If possible, COVID-19 patients should probably be admitted to negative pressure rooms (Grade 2+, weak recommendation).

Rationale Negative pressure rooms are aimed to decrease the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogens. In view of that, the risk of contamination would be decreased during the aerosol-generating procedures in such a setting. During the severe acute respiratory syndrome (SARS) epidemic, it was reported that negative pressure settings were effective in preventing cross-contamination and protecting the staff and patients inside the room [14]. According to WHO recommendations for COVID-19 patients, such locations should be with a minimum of 12 air changes per hour or at least 160 L/second/patient with natural ventilation [3].

Statement 4

The experts suggest that operators wear a portable air-purifying respirator with level III biosafety protection (Expert opinion).

Rationale An observational study reported that among 138 hospitalized patients diagnosed with confirmed COVID-19 in Zhongnan Hospital in Wuhan in January, 2020, 40 were healthcare workers [15]. Till March 15, 2020, it has been reported that over 3000 health workers were confirmed with COVID-19, among whom 14 died. The memory of what has happened during the 2003 SARS outbreak is still fresh. A systematic review showed that the healthcare workers who performed aerosol-generating procedures, including endotracheal intubation (odds ratio, 6.6), noninvasive ventilation (odds ratio, 3.1), tracheotomy (odds ratio, 4.2), and manual ventilation before intubation (odds ratio, 2.8) were at higher risk of suffering from SARS infection compared with the non-performers [16].

Most of the infections among healthcare workers occurred at the early stage of this outbreak when the self-protective directive has not yet been established and reinforced. After confirmation of human to human transmission of SARS-CoV-2, the self-protection for healthcare workers was subsequently established and reinforced from the end of January 2020. Level III biosafety protection is mandatory for intubation according to the guidance of the General Office of the National Health Committee [17].

PPE donning process should be strictly followed during high-risk operation: disposable hair cover, fit-tested N95 respirator or equivalent, fluid-resistant gown, two layers of gloves, goggle and face shield, and fluid-resistant shoe covers. The main operator should use portable air-purifying respirator. All the donning processes should be supervised by a professional nurse or assistant.

Doffing process of PPE after high-risk exposure should also be followed: hand hygiene, face shield and goggle removal, fluid-resistant gown removal, outer glove removal, shoe cover removal, inner glove removal, hand hygiene, N95 respirator or equivalent removal, and hair cover removal. The doffing process seems to be of greater importance. All the processes should also be supervised so as to reduce the risk of contamination [18].

Statement 5

a) The aerosol-generating operations such as tracheal intubation and tracheotomy are suggested to be performed by senior physicians or specialists in the field. An electronic laryngoscope with light emitting diode is suggested during endotracheal intubation. If possible, disposable equipment is suggested to be used. b) Fiber bronchoscopy is not suggested for patients without an artificial airway. The operation is suggested to be performed by senior physicians or professionally trained respiratory therapists. A bronchoscope with an external display is suggested for facilitating operations. If possible, the use of a disposable bronchoscope is suggested (expert opinion).

Rationale Large amounts of aerosols generated by incubation can increase the risk of transmission and nosocomial infection [16]. Thus, visual devices are recommended to facilitate the procedure, limit operation time [19] and ensure the distance between operator and patient. Routine fiber bronchoscopy operations are not suggested for COVID-19 patients. Meanwhile, most COVID-19 patients have few airway secretions [4] so that the indication of bronchoscopy should be strictly minimized. According to the recommendations by the Centers for Disease Control and Prevention (CDC) [20] and WHO [9], disposable medical equipment should be used for patient care if possible.

Statement 6

(a) Deep sedation (Richmond Agitation–Sedation Scale (RASS): 3–4) is suggested for patients during the procedure of fiber bronchoscopy. (b) The artificial airway is suggested to be connected with a three-way connector allowing access to get into the airway to perform a bronchoscopy. (c) The use of a closed airway suction device is suggested (expert opinion).

Rationale Severe COVID-19 patients with artificial airway tend to suffer from severe hypoxemia [15]. The patient’s secretions, droplets, and aerosols can be widely spread during the operation. Patients should be intubated within 60 s [18].

The procedure of fiber bronchoscopy should be performed gently with great caution in severe COVID-19 patients.

During bronchoscopy, following procedures should be followed to avoid aerosols spreading: artificial airway should be connected with a disposable three-way connector to a ventilator, then (a) ventilator needs to be set to standby mode, (b) the artificial airway needs to be briefly clamped, (c) the bronchoscopy should be quickly inserted into the connector, (d) the clamp should be opened, (e) ventilation should be restored [21].

For the patients requiring mechanical ventilation, it is not advisable to disconnect patients from the ventilator.

Etiological treatment

Which antiviral drug can be used for the treatment of critically ill patients with COVID-19?

Even though some clinical experts insisted that antiviral therapy is unnecessary for seriously ill patients with COVID-19 since the course of disease in severe types is longer than 2 weeks, multiple virus particles have been found at the lung lesions following histopathological examination. Up to date, there is no specific antiviral drug that has been testified and globally recognized effective for treating COVID-19. In China, several antiviral drugs such as ribavirin, ganciclovir, oseltamivir, arbidol, alpha-interferon, chloroquine, lopinavir–ritonavir, and remdesivir have been used in clinical settings for the treatment of COVID-19. Among them, oseltamivir and arbidol hydrochloride are the most commonly utilized; however, these antiviral drugs were originally designed for influenza, and their efficacy and safety for COVID-19 need to be further investigated.

Statement 7

No antiviral drugs are proven effective and should probably be considered for SARS-CoV-2 treatment (Grade 2+, weak recommendation).

Rationale Ribavirin is a broad-spectrum antiviral drug. Clinical observations have suggested that early use of this drug is efficacious in containing COVID-19. To avoid possible aerosol transmission, we do not recommend alpha-interferon nebulization for COVID-19 infected patients. According to a very recently published clinical study from France, hydroxychloroquine can significantly reduce viral load in COVID-19 patients, and azithromycin can further enhance this effect [22

Источник: [https://torrent-igruha.org/3551-portal.html]

Emergency department resuscitation of the critically ill .pdf download

3 thoughts to “Emergency department resuscitation of the critically ill .pdf download”

Leave a Reply

Your email address will not be published. Required fields are marked *